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Abstract 

The cotangent bundle T*G of a loop group is considered, not with the canonical symplectic 
structure, but with a deformation of it engendered by the nontrivial cocycle X : G --~ ~*. Three 
symplectic actions on T*¢~ are then considered; the left- and right-actions of G and that of the 
Diffeomorphism group D i f f ( s l ) .  Several examples of systems "of modified type" are shown 
to arise by combining the moment maps for these actions, in conjunction with the r-matrix 
construction. 

An abstraction of this idea is discussed and it is shown that the Clebsch integrable case of the 
motion of a rigid body in an ideal fluid is an example of a system which can be described via 
precisely the same geometric approach. 

Keywords: Reduction; Cotangent bundle; Loop group; 
1991 MSC: 22 E 67, 58 F 05 

1. Introduction 

Let / :  be the Lie algebra 0 ~< ~ where 0 = Vect(S l) and ~ = C ~ ( S l , g l n ) .  £ is 

the same as {q~I0 + v I ~b E C ~ ( S 1 , N ) ,  v E C ~ ( S l , g l , ) } ,  with the Lie bracket 

given by commutation of  operators ( I  is the identity matrix) .  In Ref. [2] the central 

extension ~, of  / :  was considered: the r-matrix construction was applied to the loop 

algebra g ( £ )  = ~ ® C [A, A - l  ] of  ~ and it was found that many results of  Kupershmidt 

[4] could be seen as special cases. Several results o f  Antonowicz and Fordy [3] were 

l Supported in part by CONACyT grant no. 3189-E9307. 

0393-0440/95/$09.50 @ 1995 Elsevier Science B.V. All rights reserved 
SSDI 0393-0440(94)0003 I-X 



306 L Marshall~Journal of Geometry and Physics 16 (1995) 305-326 

also reproduced; this corresponds to the scalar case n = 1, and was explained in Ref. 

[ 1 ] originally. The results both of Kupershmidt and of Antonowicz and Fordy involved 

finding generalised Miura maps. It was shown in Ref. [2] that these maps are all 

"encoded" in an equivariant Poisson mapping m : E* ~ V/R* from E* to the dual of 

the Virasoro algebra. An immediate consequence, sufficient to establish the connection 

with Refs. [3] and [4], is that the set of coadjoint invariants on VIR* is pulled back 

by m to give coadjoint invariants on £*. In Ref. [5] it was shown how this approach 
can be used to construct a modification of Ito's equation; this was interesting because 

the approach of Antonowicz and Fordy precluded the existence of such a modification. 

Remark.  There is a well-known construction for obtaining integrable systems for any 

Lie algebra, known as the AKS-construction (for Adler-Kostant-Symes) or the r-matrix 

approach. It means that one essentially proceeds by saying 

"Think of a Lie algebra g. Find the set l (g*)  of Ad*-invariants on the dual." 

One constructs g(g) = g ® C [ A, A - l  ] and then carries out some standard computations. 

A brief description of this construction is given in the Appendix for completeness. We 

do not concern ourselves here with it other than to use it to compute the flow in Section 

5. A thorough account of the technique can be found in Ref. [9]. 

The present paper has two objectives. 

1. The primary objective is the presentation of the results of Ref. [2] from a geometric 

point of view. It becomes rather obvious how some of the mysterious formulae in Ref. 
[2] (and hence also those in Refs. [3] and [4] ) come about. In particular the mapping 

m is given an interpretation in terms of a dual pair of Poisson maps. Also we get a 

simple proof that the set l(/~*) of Ad*-invariant functions on L~* is exactly the set 

m* (I(VIR*)) given in Ref. [2]: there it was only recognised that m* ( /(V/R*))  C 

I (E*) .  (m* is the pull-back mapping of functions on V/R* to functions on/~*.) 

What will be established is the connection with the results of  Ref. [2] and the 

following well-known picture: 
Consider the cotangent lift to T*H of the left and right actions of H on H, where 

H is any Lie group. The moment maps for these two actions form a dual pair; this 
is a reflection of the even more well-known fact that left multiplication and right 
multiplication commute with one another. 

2. One is naturally led to ask: Are there any interesting consequences of this geometric 
description? The results of Ref. [2] become so much clearer, even in the simplest n = 1 
case, that it is tempting to look for new kinds of systems by similar means. This 
secondary objective is left to some extent unresolved. It seems possible though that the 
idea suggested might lead to some interesting results. 

A very important context within which to treat the Miura map seems to be that of a 
semidirect product Lie algebra (or group), moreover it seems to be important that this 
Lie algebra have a nontrivial central extension. For evidence of this one can look at 
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several of Kupershmidt's papers, such as those in Ref. [4], as well as at Refs. [ 1 ] and 

[2]. A natural way of studying a semidirect product Lie group .,4 D</3 is to look at its 
action on T*/3: one can lift the left and right actions of /3  on/3 as well as the action of 

,,4 on/3  to T*/3. The results of Ref. [2] follow almost automatically when we take/3 to 

be the loop group/3 = 0 = C ° ° ( S  1 , G),  adding the central extension to the Lie algebra 

~, and ,,4 = D i f f ( S  1 ). 
The "idea" suggested here then amounts to little more than to say "Look at semidirect 

products having central extensions". However we will show that the interesting systems 

so obtained are not restricted only to those of Ref. [2]; the Clebsch integrable case of 

a rigid body in an ideal fluid can be described in exactly this way with some surprising 

similarities to the systems of Ref. [2]. It is one of a class of systems found from the 
case when/3 = V is a vector space - the group product law is addition, i.e./3 is abelian 

- and ,,4 is a certain subgroup of G L ( V ) .  

Summary of  Ref  [2] 

Let G be the Lie group 

= O i f f ( S  l) D< G. (1.1) 

Here 0 = C ° ° ( S  l , G) with G any finite dimensional Lie group. The product rule on G 

is given by 

((0-1,gr) (0-2,g2)) H (0-1,gl) (0-2,g2) = (02 ooq,g lg2  o0-1). (1.2) 

(Note that the product defined here on the first component - D i f f ( S  1) - is not the 

same as that often used. This is not important, but it conforms with the convention of 

Ref. [2].) 

In Ref. [2], the construction of the r-matrix approach was applied to the loop algebra 

g (£ ) ,  where £ is the extended Lie algebra of G: 

Assume that the Lie algebra ~t of G has an Ad-invariant inner product ( , ) and 

use it to identify g and ~t*. Let A E C(~) ,  i.e. [XA] = 0 VX E ~. We find that G has 

three nontrivial coadjoint 1-cocyeles. The formulae for the adjoint and coadjoint actions 
respectively on the (3 times) centrally extended Lie algebra ~ =/2 • ~ • • @ ~, where 
£ is the Lie algebra of G, and on its dual ~*, are given by 

ad(~bl, vl, al,  bl, cl ) (~b2, vz, a2, b2, c2) 

= ( ~ , 4 4  - '~ '~2,  [v,,v2]+4,1v~ - '#2V~, 

, v2), (A,  4,~'v2 " --  ~ 2  V l ) '  q~l ~b2 , 

s I s j s j 

(cki,vi, ai, bi,ci) E C ° ° ( S J , R )  xC°° (S I , I~ )  x ~ x  ]~x ~ , ~ ;  (1.3) 
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a]:li ¢, v) (u, s c, el,  e2, e3) 

(2¢ 'u  + Cu' + (~,v ' )  + e2(A,v  t') + e3q~ tt', 

(&() '  + [v,~] + e l v '  - e2¢" a,  o, o, o ) ,  

( ¢ , v )  e C ~ (S~,R) × C~(S~ ,~)  ~ £, 

(u ,~ , e l , e2 , e3 )  E C ~ (SI,]~) × C ~ ( S Z , g )  × R x ~ × • ~ ~*; (1.4) 

tkdi0- ,go 0.) ( u , f ,  e l ,e2,e3)  

= (0-,2(u + (~:,g-lg,) + ½el(g- lg , ,g - lg , )  + e2(A, ( g - ~ g ' ) ' )  o 0- + e3S(0-), 

0"1! ) 
o-'(g~g -] + elg' g - l  ) o 0- - e2 0----7A, el, e2, e3 , 

(0- ,goo ' )  ¢ ~, ( u , ( , e l , e 2 , e 3 )  E £*. (1.5) 

S is the Schwarzian derivative, S(0-) = (0 - " /0 -0 ' -  1 (°" ' / °" )  2. 

D i f f ( S  1 ) has one nontrivial coadjoint 1-cocycle. The central extension ~ = ~ + R of 
the Lie algebra ~ = Vect(S 1 ) of D i f f ( S  1 ) is known as the Virasoro Lie algebra. From 
now on we use 6 = V/R. The formulae for the adjoint and coadjoint actions respectively 
on V/R and on the dual of V/R are given by 

( S ) (¢1 a l , )  (¢2,a2) = ~bi~b t ' 

S l 

((bi,ai) E C°°(S],]R) x IR ,-, V/R; (1 .6 )  

^ VIR ,  
ad ¢ ( u , e )  = (2¢ 'u+(bu '  +e(bm,O) 

¢ e c ~ ( s ] , ~ ) ,  

(u ,e )  E C~(S I , ]R)  × ]R ~ V/R*; (1.7) 

^ V/R,  ) 
A d  0"(u, e)  = (0' '2u o 0" + eS(0") ,  e , 

0" E D i f f ( S 1 ) ,  

(u ,e )  E C ~ ( S I , ~ )  x R , ~  VIR*. (1.8) 

Define a map m :/~* + V/R* by 

m(u,~:,e) = (e~u - ½(sc, s c) - e2(a,sc'),  ele3 + (e2a ,e2A))  . (1.9) 

The two principal results of Ref. [2] were the following: 
^ * ^ V/R,  

(i) moAd(~,,g)=Ad ~ o m ,  (1.10) 

where/(d* is the coadjoint action of G on £* given by (1.5) and/ (d  wR* is the 
coadjoint action of D i f f ( S  l ) on V/R* given by (1.8). 
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(ii) The map M : g(~*) --* g(V/R*) also given by the formula (1.9) is a Poisson map 

from g(£*) with the Rq-Lie-Poisson bracket to g(V/R*) with the Rqel-Lie-Poisson 

bracket. 
The meaning of the expression "Rq-Lie-Poisson bracket" is given in the Appendix, 

where the r-matrix approach is explained for completeness. 
(i) implies that (some) elements of the set I ( £ * ) ,  of invariant functions on £* can 

be found from those on V/R*. 

(ii) is useful because in the investigation of integrable systems, it is the various R- 
Lie-Poisson brackets on the duals of the loop algebras which are important. Although 
it is an immediate consequence of (i) that m is a Poisson map with respect to the 
Lie-Poisson brackets on £* and on V/R*, it is a nontrivial fact that the same is true of 
the respective R-Lie-Poisson structures on g(~,*) and on g(V/R*). 

At the end of Ref. [2] it was remarked that m looks like a dual map (in the sense 
of dual pairs) to another rather natural map: 

Let fi = ~ @ R be the central extension of ~, where ~ = C ° ° ( S  l , g) is the Lie algebra 

of G. Then p : £* ~ ~* given by 

p (u ,~ , e )  = (~ ,e l )  (1.11) 

is a Poisson map from L2* to 0". The functions which commute with p* (C°°(fi *) ) with 
respect to the Lie-Poisson bracket on £* are the pullbacks by m of functions on V/R*. 

This observation concerning the duality of m and p is not a rigourous statement in 
so far as £* is not a symplectic space. Nonetheless it suggests that there may be some 
underlying "reason" behind the existence of m and its properties. 

The intention of the present paper is to provide this underlying structure. The paper 
is organised as follows: 

Section 2 gives various formulae for moment maps and for their associated symplectic 

actions. Most of these formulae can be found with small differences, in Ref. [6]. Some 
of them can also be found in Ref. [7]. 

Section 3 provides the main result of the paper, namely 
(i) I ( £ * )  = m*I(V/R*), 

(ii) The results of [2] can be described in a natural way by applying a dual-pair 
argument to the left and right actions of (~ on T*Gk. 

In Section 4 is identified the geometric picture underlying the construction of Ref. 
[2] (and thence of Refs. [3] and [4]) .  It is suggested that this picture is of quite a 
general type. 

In Section 5 another special case is considered of the general picture described 
in Section 4. One such example is described in detail, leading to the standard Lax 
representation for the Clebsch system. Note that this shows that we have not simply 
found an alternative, new notation for Ref. [2], but that there do exist other kinds of 
examples of the picture described in Section 4, giving credence to the suggestion that it 
has the status of a general construction. 

There now remains the interesting question: 
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Do there exist any other kinds of examples essentially different to those described in 
Section 3 and in Section 5? 

2. The moment  mappings  for the actions of  t~ and of  Diff(S l) on T*(~k 

This section is a summary of the results described in the first half of Ref. [6], with 
a few minor and unimportant changes. 

Let G be a Lie group. Suppose that the Lie algebra g of G has an Ad-invariant inner 
product ( , ), and use this inner product to identify g with g*. Let (~ be the loop group 
of G, 

= C°°(S 1 , G), (2.1a) 

and let ~ be the loop algebra of g, 

= C °° (S  l , g) .  (2.1b) 

We let ~ be a model for the space ~* by defining the pairing between an element 

~: C ~ ~-~ ~* and an element v E ~ by 

(~, v) = I ( ( ( x ) ,  v(x)  )dx.  (2.2) 

S t 

T*(~ has a one-parameter family of symplectic structures -Ok given by 

g2k(g, tx)=d(tz ,  g - l d g ) + k ( d g g - l , d ( g ' g - l ) ) ,  (g,/~) E G x ~*. (2.3) 

Here we have used the identification T*G ~ (~ x ~*. We will work in the space G x ~* 
from now on. To write the Poisson bracket corresponding to (2.3) in components, let 
F E C~((~)  and ~: c ~; now let f and ~b¢ be given by 

f (g ,  IX) = F(g) (2.4a) 

~b¢(g,/~) = (t z, ~:). (2.4b) 

Then we have 

{ f i ,  f2} = 0, (2.5a) 

{f,  ~b~}(g,/z) = d t=0 F(geff) '  (2.5b) 

{4,~, 4,. }(g, ~)  = - ( ~ ,  [~:, n ] )  - 1,(n', ~:). (2.5c) 

Remark. The important ingredient is the fact that (~ has a nontrivial coadjoint cocycle 
mapping G to ~*, given by g ~ g,g-1. We can construct a similar deformation of the 
canonical two form for any Lie group with a nontrivial cocycle: 
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Let H be a Lie group, with Lie algebra 0. Suppose that 2 : H ~ !~* is a coadjoint one- 

cocycle, i.e..,~ satisfies ~(gh)  = £(g)  +Adg2~(h) Vg, h E H. Then the generalisation 
of formula (2.3) is given by 

f2k(g, lz) = d { # , g - l d g )  + k(d.Z(g),dgg-~),  (g,/z) E H × 0", (2.3/) 

while (2.5c) is replaced by 

(2.5d) 

(2.4a,b) and (2.5a,b) are unchanged. In (2.5ct), o- = d,~(e) is the derivative at the 
identity of 2, i.e. o-(X) = d/dtl,=o£(exptX); and ( , ) is the pairing between 0 and 
0". This remark will be referred to in Section 4. Note that formulae (2.3 I) and (2.5c') 

can be found in Refs. [7], as can (2.7 I) below. 

Remark. The extra term in the symplectic structure Ok, given by (2.3) or (2.3'), is 
a magnetic term. In general a magnetic term on T*M is a 2-form given by ~r*c where 
7r : T*M ~ M is the canonical projection to the base, and c is a closed 2-form on M. 
A rather general construction using Hamiltonian reduction and described for example in 
Section 5.2 of Ref. [9], always leads to the addition of a magnetic term. The present 
situation could be thought of as arising as a special case of this construction, but while 
some readers might find it helpful to understand this fact, it is not necessary for a 
complete understanding of the results described here. 

For completeness let it be said: 
One might start off with the cotangent bundle T*G of the central extension (~ of G, and 
then perform Hamiltonian reduction with respect to the natural U(1) action associated 
with the bundle structure p : (~ ~ G. As U(1) is abelian the isotropy subgroup of any 

point in the dual u ( 1 ) * is the whole of U( 1 ) and hence the reduced space j - i  ( k ) / U (  1 ) 
is diffeomorphic to T 'G,  where j : T*G ---, R is the moment map for the U(1) action. 
The reduced symplectic structure on T*G is the canonical one plus an extra term (given 
by (2 .3 ) ) ,  whose geometric interpretation is that it is the curvature of a U( 1 ) connection 
on the bundle p : G --~ 

Let us denote by T*Gk, the cotangent bundle T*(~ together with the (noncanonical) 
symplectic structure given by (2.3). (T'G0 is T*G with the canonical structure.) The 
left and right actions of (~ on G are lifted to T*Gk in a way which generalises the 
standard k = 0 case to give symplectic actions. Write these actions L and R: 

Lh : T*t~k --~ T*(~k, Lh(g, tz) = ( hg, l~) , (2.6a) 

Rh-, : T*t~k ~ T*Gk, Rh-,(g,  tz) = (gh - l , h l zh  -1 + kh 'h-1) ,  (2.6b) 

for any h E G. The correspondence h ~ Rh-i is used for convenience to keep the order 
of composition, i.e. hlh2 ~ R h ~ l h ~ J  = Rh?~ o Rh~-~. The moment maps J~ and jR, for 
L and R are given by 
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jL(g,  At) =gAtg-l + kg, g-I , (2.7a) 

jR(g ,  At) = _At .  (2.7b) 

Let us now draw attention to the fact that jL and jR form a "dual pair" on T*Gk - 
exactly as in the standard case, k = 0. That is 

jR -I ( jR(g,  At) ) = Ld(g, At) = {Lh (g, At)Ih E (~}, (2.8a) 

jL-1 ( jL(g,  At) ) = Ro(g ' At ) = {gh_ l (g, At)l h E (~}. ( 2 . 8 b )  

Equivalently, 

jR* C ~ (~,)  = centraliser of jL* COO ( ~, ) 

with respect to the Poisson bracket on T*Gk, (2.9a) 

jL*coo (~*)  = centraliser of jR* C ~  (~*) 

with respect to the Poisson bracket on T*Gk, (2.9b) 

i.e. {F,~oo J L } = 0 Vq~ E C ~ ( ~  *) ¢¢, F = ~boJ R for some ~b E C°°(~*), and similarly 

for L and R interchanged. 

Note. In the general case of the Remark following (2.5), the formulae in (2.7) are 

replaced by 

jL(g,  At) = AdgAt + k~(g) ,  (2.7a') 

jR (g,/1,) = _At, (2.7b') 

and the dual pair property always holds. 

The group of diffeomorphisms on the circle has product rule D i f f ( S  1 ) × D i f f (  S 1 ) --* 
Di f f ( S l) given by 

(o"1,0.2) H 0-1o'2 =o '2oo '1 ,  (2.10) 

where o means composition. (Note that (2.10) is not the usual convention. Compare 

the comment following (1.2).) 
The Lie algebra of D i f f ( S  I) is ~ = Vect(S I ), the set of vector fields on the circle. 
~ C°°(SI ,R)  and the Lie bracket is given by 

[y, p] = yp' - y' p. (2.11) 

The dual space ~* is modelled by C~(SI , I~)  with the pairing given by 

(u, y) = / u (x )y (x )dx .  (2.12) 
o ,  

S l 

D i f f ( S  1) has a natural action on G given by 

o ' . g = g o 0 " .  (2.13) 
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This action can be lifted to give a symplectic action on T*Gk. In fact, as in Ref. [6],  

we consider a more general action. Let us fix 

0, ~b C g (2.14) 

to be any two elements of  g. Define the action of D i f f ( S  1 ) on (~ by 

0.. g = e °l°g'~' (g o o-)e -'~l°g~'' . (2.15) 

Let us for convenience write 

e Ol°gt = O ( t ) ,  (2.16a) 

e 4,l°g t = ~ ( t ) .  (2.16b) 

By lifting the action given by (2.15) we get the symplectic action of  D i f f ( S  1) on 
T*Gk given by 

or. ( g ,  IX) = Lo(,~,)R~(o.,)-i (g o or, oJ ix o or) 

= ( O ( o " ) g  o o'qb(o "1) -1,0. '~0(o-') IX o 0.qO(0. I) -1 + k~O(o.1) Iqb(o.,) -1)  

o.Ii \ 
= O(o")goo 'q0(o ' / ) - l ,o"~(0 .1) ixo0 .qO(0 .1)  - l  +k--~Tqb ) . (2.17) 

To get the infinitesimal action of D on T*Gk we consider the action of  0. = e + ty  (e is 

the identity diffeomorphism) and differentiate with respect to t at t = 0. We obtain the 

vector field X z, given by 

Xy(g,  t x)  = ly,o(g, IX) + r_y , , (g ,  IX) + (ygl,  (y ix) t ) ,  (2.18) 

where l and r are the infinitesimal actions corresponding to L and R respectively. The 

vector fields given by ly'o and r_y, 4, are the hamiltonian vector fields of  the functions 
(jL,  yl0) and ( j r ,  yl~b), respectively, i.e., 

X./(g, IX) = X(jL,y/O) "~ g(jRy,da ) (g, Ix) + (ygt, (TIX)t). (2.19) 

In order to find the moment  map for the action given by (2.17) then, we wish to 

find a hamiltonian function h for which o = Xh, where v is the vector field given by 

v(g,  IX) = (ygl,  (y ix) l ) .  Let us consider the action of  o on the functions f and ~b¢ given 
by (2.4):  

( v f ) ( g ,  ix) d t__o - ' '  d t__o = f ( g e  tyg g ,IX + t ( y ix ) ' )  = F(getrg-ig') ,  (2.20a) 

(vq~() (g, IX) = d t=o (bE (getyg-lg" Ix d- t (yix)  1) = {(yix)t, ( )  = _(IX, y~:t). (2.20b) 

From (2.20a) we have h(g, ix) = (ix, yg - lg l )  + K(g) for some function K and from 
(2.20b) we get the following condition on K: 

d t=o K(get()  = k(~l' yg- lg t ) .  (2.21 ) 
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A solution of (2.21) is given by 

K(g) = ½k(g-l g ', yg- lg , ) .  (2.22) 

It follows then that Xr given by (2.18) can be written as a hamiltonian vector field; 

Xr(g,  I~) = XH(g, IX), (2.23) 

where 

H(g,  Ix) = (jL (g, Ix), y'O) + (jR (g, Ix), y'~b) 

+ (Ix, yg - 'g ' )  + ½k(g- lg ' ,yg- lg ' ) .  (2.24) 

We now notice the important fact pointed out in Ref. [6] : 

H(g,  Ix) = (`7(g, Ix), y),  (2.25) 

where f f  can be written 

`7 = --(0, J Lt) - (qb, jR')  + 1 [(jL,  jL)  _ ( jR,  jR)] .  (2.26) 

We thus have a moment map ,7 : T*Gk --* D* for the action given by (2.17), and ,7 
can be expressed in terms of  the left and right moment maps jL and J~. 

,7 is not equivariant. We can define an equivariant moment map j" : T*Gk ~ VIR* 
by 

3 = (,7,k((~b,~b) - ( 0 , 0 ) ) ) .  (2.27) 

Here V/R means the Virasoro Lie algebra, i.e. the central extension of ~. 

To conclude this section let us observe that 

0-. Lh. (g, Ix) = Lo~,)ho~O~,)-, " 0-" (g, Ix). (2.28) 

It follows that 

(o-, h) • (g, Ix) = Lh- 0-. (g, Ix) (2.29) 

defines on T*Gk an action of the semidirect product group G = D i f f ( S  1) ~< CJ, with 

product rule given by 

( (O ' l ,h l ) ,  (0-2, h2)) r---* (O'l ,hl)(o '2,  h2) 

= (0-1 o o'1, hlO(0"])h2 o o ' lO(o" l ) - l ) .  (2.30) 

This action has moment map 

( f f  , jL)  : T*Gk --~ E*. (2.31) 

Here/3* is the dual to £,  the Lie algebra of G. The Lie bracket on £ is given by 

[ ( y , X ) ( p , Y ) ]  = (yp '  - y 'p ,  [X,Y] + y ' [0 ,  Y] - p'[O,X] + y Y '  - pX') .  (2.32) 
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To obtain an equivariant moment map we take 

® = (f f ,  J L , k , - k a ,  k((ck, ck) - ( 8 , 8 ) ) )  :T*Gk -+ £*. (2.33) 

Here the Lie bracket on ~ = E (9 N (9 N (9 R is given by 

[(y, X, al, bl, cl ) (p, Y, a2, b2, c2)] 

= ( y p ' - y ' p ,  [X,Y] +T'[O,  Y I - p ' [ O , X ] + y Y ' - p X ' ,  

f(X(x),Y'(x))dx, fl(o,4'(x)Y(x)-p"(x)X(x))dx, 
S t S I 

f (2.34) 
S l 

In addition ® has the intertwining property, 
A 

® o (Lh" o-.) = Ad(Z;)~,h)®. (2.35) 

^ 

P~d (c)* here refers the coadjoint action of ~ on L*. The notation here agrees with that 
of Ref. [2]. However £ here is slightly more general than it was in Ref. [2]. There we 
had 0 o( I. 

Note the artificial introduction of the constant a into the formula for the Lie bracket. 

This is done to make it clear that we can have three independent cocycles, so that the 
image of @ really is the whole of £*. 

3. Description of the map m in terms of the moment mappings 6,  jL and jR 

We are interested in finding the set I (L*)  of Ad*-invariant functions on L*. This is 
a subset of C°~(~ *) characterised by the following property: 

E I (~* )  implies that for any point (u,~,el ,e2,e3) E L*, 

~(Ad~,h)(U,~,el ,e2,e3))  = ~(u,~,el ,e2,e3)  V(tr, h) E G. (3.1) 

As explained in Section 1, at least some functions of this type are generated by a 
Poisson map from ~*to V/R*. That is 

f C/(V/R*)  =¢, f o m  C I (~* ) ,  (3.2) 

where m is given by (1.9). We now reconsider the problem and show that it has a 
natural resolution in terms of the moment maps ~ ,  jL, jR. 

Let us notice that LT can be written as the sum of two maps, 

3 = ,~L + dR (3.3) 

where 
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~L=(- - ( jL t ,o )+- -~(JL , jL ) , - - k (O,O) ) ,  (3.4a) 

2R = _(jR' ,  ~ ) _ .~(  jR, jR), k( d~, ~)) , (3.4b) 

and that the duality property (2.8), (2.9) of jm and jR means that ~m and ~R them- 

selves separately define equivariant Poisson maps from T*Gk to V/R*. (Note that it is 

not the case that a symplectic group action is associated with either of them - although 
this fact need not worry us here.) 

Suppose that ~o C C ~ ( ~ * )  satisfies (3.1). It follows from the intertwining property 
(2.35) of 6 ,  that q~ o ® satisfies 

~(~(g, / . t ) )  = ~ ( ® ( L h  .or. (g, /z)))  V(or, h) E (g. (3.5) 

In particular, for o- = e we have 

(~ o 6)  o Lh = (~p o 6 ) .  (3.6) 

Hence 

o ® = ~b o jR (3.7) 

for some ~b C C ~ (~*). 

We have now from (3.3) and (3.7), using (2.33), 

~o ((].m + ffR, jm,k ' -ka ,  k( (dp, d?) - ( 0 , 0 ) ) )  = ~b o jR. (3.8) 

Indeed, we must have 

~b o jR = f o ,~R (3.9) 

for some f E C~(V/R*) .  It follows then that ~ is given by 

~ ( u , , , e l , e 2 , e 3 ) = f ( e l u - - e 2 ( , ' , l O ) - - ½ ( , , , ) , e l e a + e 2 ( l o ,  l o ) ) , ( 3 . 1 0 )  

with f E C°°(VIR*). If  we now impose h = I in Eq. (3.5) and use the equivariance 
property of ~-R : T*Gk -+ V/R*, we find that f must itself be an element of I(VIR*). 
Comparing now Eq. (3.10) with Eq. (1.9) of Section 1, we get the result, 

¢ = f o m  for s o m e f E I ( V I R * ) .  (3.11) 

Aside. Let us recall how to define an element of I(VIR*). Consider a point (u, e) E 
V/R*. Define the corresponding linear problem 

(2ea 2 + u ) ~  = 0. (3.12) 

The action of D i f f ( S  I ) on gt given by 

or. ~r = ort-1/21 D" o or  (3.13) 
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generates the/~d vIR* action, 

^ V/R, 
o'. (u ,e )  = Ad ~(u ,e) .  (3.14) 

It follows that the set of invariant functions evaluated at the point (u, e) are generated 
by the eigenvalues of the monodromy matrix of the linear problem (3.12). 

As formula (3.11) is the main result of this section, let us rewrite it as a theorem: 

T h e o r e m .  The set I(fl.*) of Ad*-invariants on L* is the set of functions of the form 

{q~= f om l f E l(VIR*) }. (3.15) 

Thus ~o( u, ~, e) is an eigenvalue of the monodromy matrix of the linear problem 

[2(ele3+e29(lo,  l o ) ) o 2 + ( e , u - e 2 ( l o , ( ' ) - ½ ( ( , , ) ) ] q r = O .  (3.16) 

Now for comparison with Section 1 we just put 0 = aA. 

4. T h e  g e n e r a l  p ic ture  

What we have been looking at in Sections 2 and 3 is the following geometric picture: 
We have a representation - with a central extension - of a semidirect product Lie 

algebra a ~< b by hamiltonian vector fields on a symplectic manifold A/I. The correspond- 
ing moment map has two components, corresponding to the natural decomposition of 
the semidirect product; the first component ,7 is factored through a dual pair {p1, p2} 
of moment maps on At/, i.e., it can be expressed entirely in terms of these two maps, 
and the second component is itself just p1. Suppose that ,7 can be written in the form 

j = ` 7 1  +`72, (4.1) 

with j l  expressed wholly in terms of pl  and j 2  expressed wholly in terms of p2; then 
the mapping m : [(aD< b)^] * ---, fi* given by (,7, p1) ~_, ,72, is a Poisson mapping, m 
has the form 

m : (cr, f l )  H a -  b ( f l ) ,  (4 .2 )  

where `71 is b ( P  l).  m is 
(i) equivariant 

(ii) linear in a. 
Properties (i) and (ii) are enough to guarantee that m defines a Poisson mapping on 

the corresponding duals of loop algebras with their appropriate R Lie-Poisson brackets. 
Proving this is an exercise in the r-matrix formalism; it is demonstrated for the case of 

in Ref. [2], and the general case can be proved in precisely the same way. 
Whilst this geometrical picture is indeed an attractive one, it needs to be asked to 

what extent it is justified to see it as interesting or useful. The answer would seem to be 
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that there should at least exist examples other than that provided by t~ - as in Sections 

2 and 3 - embodying the above moment map construction. In the next section it will 

be shown that another example does indeed exist; the loop group (~ = C°°(SI,G) is 

replaced by a finite dimensional vector space with product law given by addition of 

vectors. We will look at the Clebsch system from this point of view, and it will be 

seen that the "Miura map" given by (4.2) is just the Lax representation of the Clebsch 
system. 

In view of the existence of nontrivial examples making use of Lie groups other than 

(~, the above description of the Miura map may well turn out to have an appealingly 

broad application. It would be very interesting to discover some new examples; to do 
this will amount to the investigation of the class of centrally extended semidirect product 

Lie groups. 

5. Example 

Let us introduce this section with the simple observation that if V is an abelian 

Lie algebra then any skewsymmetric two-form on V defines a nontrivial cocycle. The 
subgroup G of GL(V) which leaves this two-form invariant can be made to act on V in 

the obvious way. 
Let V be a real vector space with an inner product. We choose some orthonormal 

basis {ei} to identify V with Rn: we have (~:,r/) = ~T7/, where ~" C R n is given by 

= ~ ie i ,~"  = (~1 . . . . .  ~n) r, and ~ is defined similarly. V* is identified with V. We 

now immediately drop the hats in all that follows and make use of the two spaces V 
and ]I~ n interchangeably. 

Define o" : V --~ V by o-(s ¢) = J~:, where J E End V satisfies jT = _ j .  Then or defines 

the centrally extended Lie algebra structure on f '  = V @ R given by 

[ (s c, a )  (n ,  b) ] = (0, ~:~Jn) • (5.1) 

The Lie group corresponding to the abelian Lie algebra V is V itself with the multipli- 

cation rule given by addition of vectors. The group cocycle 2 on V corresponding to o" 

is the same as o-. Thus we have the deformed symplectic structure Ok on T*V given in 

terms of the canonical variables (q ,p )  on T*V by 

{qi, qj}=O or {q, qT} = 0, 

{qi,Pj}=6ij or {q, pr} = I, (5.2) 

{pi ,p j}=-kJi j  or {p, p r } = - k J .  

As before we refer from now on to T*Vk to imply T*V with the above non-canonical 
Poisson bracket. 

Note that the (q ,p )  are not canonical in the usual sense unless k = 0, but rather are 
canonical as a choice of coordinates on the manifold T*V. 
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There is an action on V of the subgroup of GL(V) which leaves invariant the cocycle 

in (5.1). It is convenient to assume from now on that J is nondegenerate, which means 
that dim V is even and that the subgroup referred to earlier is the symplectic group, 

G = {g C GL(V) I gr = j g - l j - 1 } .  (5.3) 

The action of G on V is given by 

g.  ( = gs c. (5.4) 

As explained in Section 4 we are to be interested in looking at semidirect product 
Lie groups .A ~</3 having a cocycle. The idea then is to imitate the construction of the 
last section where now/3 = V and .A is the symplectic group G given by Eq. (5.3). 

The left and right moment maps are given by 

j r  (q ,p )  =P + kJq,  (5.5a) 

jR(q,  p) = _ p ,  (5.5b) 

and as usual jc  and jR are a dual pair of Poisson maps. 
Note that in order to write down the formulae in (5.2) and in (5.5), we made use of 

(2.3~), (2.5c ~) and (2.7a,b ~) of Section 2. 
The Lie algebra of G is 

0 = { x  c gl(V)l  X r = - J X J - l } .  (5.6) 

The dual of g is identified with gl (V) /o  ±. It is easy to check that gl(V) = g + g-L; 
hence 0" ~ g with X + g ± ~ PgX where P~ is the projection onto 0 with respect to the 

decomposition gl( V) = 0 + 0 ±. 
The action of G on V lifts to an action on T*Vk given by 

g.  (q ,p )  = (gq, ( g - l ) r p )  = (gq, j g j - l p ) .  (5.7) 

The moment map 3" : T*Vk ~ g* for this action is given by 

f f ( q , p )  = qpr  _ ½kqqrj + g± ~ ½qpr _ ½ j - l p q r j  _ ½kqqrj. (5.8) 

We can rewrite ,.7 in terms of jR and jL: 

~k ] - l  
f f  = j - I ( j L ( j L ) r  _ jR ( jR ) r )  + g± ~ ~_~j ( j L ( j L ) T  _ jR ( jR ) r ) .  (5.9) 

The mapping f f  • jL : T*Vk --+ f~* is a moment map for the action of the semidirect 

product Lie group G = G ~< V: 
The product rule on G is given by 

(g, v) (h, w) = (gh, v + gw). (5.10) 

The Lie algebra/~ of G is 0 ~< V. The Lie bracket is given by 

[ (x ,~) ( r , r~ ) ]  = ( x Y -  rx, x n  -Y~) .  (5.]1) 
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f f  @ jL is not equivariant. The equivariant mapping corresponding to f f  • jL is ® : 

T*Vk ---~ ~*, 

G = (,Y, jL, k), (5.12) 

where £ is the central extension of/2 given by 

[ ( X , g , a )  (Y, rl, b) ] = ( XY - YX, Xr  I - Y(, ~:rJT/). (5.13) 

The extended coadjoint actions of G and o f / :  on ~* are given respectively (see 
(2.35)) by 

t~d*(g,,)(a, tz, e) = ~ o L,  . g .  ~-1 (a,/x, e) 

= (gag -1 + lvtzTg-1 -- ½ J - l g - ' T l z v r J  -- ½evvrJ, g - l r t x  + eJv, e) 

= (gag -1 + ½vlzrg -~ - ½gJ-l/xvrJ - ½evvrJ, JgJ-~iz  + eJv, e). (5.14) 

acl*~xg~ (a, /z ,  e) = ( [X, a] + ½sc/z r - l j - I  .~rj  ix~ , - X r l z  + eJs ¢, 0). (5.15) 

Suppose that we would like to use the r-matrix method to describe systems of 
commuting flows on ~*® C [ A, A-l ]. We need to find the set of/kd*-invariant functions 
I (£*) :  

Let f E 1(£*). Then Jr(t(d*(g,v)(a, tz, e ) )  = • ( a ,  lz, e) V(g,v) E ~. It follows 
from (5.14) that .T'o ® E C°°(T*Ve) satisfies 

( .Y 'o~) (q ,p )  = ( . T ' o ~ ) [ L v . g . ( q , p ) ]  V(g,v) E ~ ,  (5.16) 

.'. ~" o ~ = F o jR for some F E C ° ° ( V  *) and indeed F o jR = f ( ( l / 2 e ) j - l j R ( j R ) r )  

for some f E Coo(g*); this follows from putting g = identity in (5.16); but putting 
v = 0 in (5.16), we find that f must be in I(g*). Thus 

~ o J : = f ( 1 J - 1 J R ( J R ) r ) ,  withf E / (g*) .  (5.17) 

The appropriate "Miura map" m : ~* ~ [t* then, is given by 

1 - 1  
m(a , / z , e )  = a -  ~ee J #/z r (5.18) 

and 1(~*) is the same as m*I(g*). I(g*) is generated by functions of the form, 

1 
fl~ , - t r f l J .  (5.19) 

J 

The Clebsch case of  a rigid body in an ideal fluid 

The Clebsch case of a rigid body in an ideal fluid fits nicely into this framework. 
What we find is that the analogue of the Miura map given by the formula in (5.18) 
is the Lax representation of the system. In fact this Lax pair was given by Perelomov 
in Ref. [8]. A detailed description of the use of the r-matrix approach to obtain this 
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Lax pair can be found in Ref. [9]. The new thing is the fact that in the present context 
the Clebsch system can be seen as one of the very simplest examples embodying the 
structures of the various systems described in Refs. [3] and [4]. 

Let V = C N. (There is no difference for present purposes between ]R 2N and C N. It 
is just a notational convenience for us to choose this representation.) Define the inner 
product on V by 

((,r/) =Re~tr / ,  ( , r / C  C u, (5.20) 

where t denotes complex conjugate transpose. Let 

J = iI ,  ( 5 . 2 1 )  

where I is the identity matrix. 
Let 

G = {g E GLNC I gt = j g - l j - Z  = g-l} = S U ( N ) .  (5.22) 

G -- G D< V has product rule 

(g, v) (h, w) = (gh, v + gw). (5.23) 

Introduce the nondegenerate inner product on the Lie algebra £ of G: 

( (o t , / z ) (X ,~Z) )=Re[ t r aX+# t ( ] ,  (o~,/z) E E , ( X , ~ )  E £ ,  (5.24) 

to identify £* ~ £. The central extension of £ due to the cocycle J is given by 

[ ( X,~C,a) (Y, r},b) ] = ( XY  - YX, Xr I - YsC, Re i~tr/), 

(x,(,a), (Y, mb) c £ = Z : e R .  (5.25) 

The coadjoint actions of G and of £ on £* are given respectively by 

A~d*~g.v~ (o~,/z, e) = (gag - I  + lv/xtg-J - ½g/zv t - ½ievv t, Xi.t + iev, e ) ,  (5.26) 

a~d*~x,~ (a, /z ,  e) = ( Xce - a X  + ½(/z t - ½ # ( t ,  Xl~ + iesC, O ). (5.27) 

The coadjoint invariants on s u ( N )  ~ su (N)*  are generated by functions of the form 

f j ( [~)  = 1Retr/3g, tgE s u ( U ) ,  j = 2 , 3  . . . . .  N, (5.28) 
J 

and the functions in I (~*)  are generated by the pullbacks under m of these, where 
m : £* ---* s u ( N )  is given by (5.18); thus 

1 
m(a , /z ,  e) = a + ~ei/Z/.t t. (5.29) 

We now make use of the r-matrix construction (see Appendix) applied to a twisting 
of the loop algebra based on £: Define the involutive automorphism 7- on £ by 

7"(X, sC, a) = (X*,s c*, - a ) ,  (5.30) 
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where • denotes complex conjugation. The untwisted loop algebra based on ~ is 

= s X g(£)  {~i=r( i,(i, ai) Ai ] (Xi,~i, ai) E £, r,s integers}. (5.31) 

The twisted loop algebra given by z is 

£ ( L r )  = {(X,~,a) ~ e(£)  I ( X , & a ) ( - a )  = ( x * , ~ * , - a ) ( a ) }  

X = { ~ i = r (  i, ~i, ai) A i ] a2n -- 0;  ~:2n, X2n, i~:2n+l, iX2n+l real Vn, 

and Xi E su(N) Vi}. (5.32) 

We identify g(/~, T)* ~ g(~, ~-) by using the inner product, 

(((a, tz, e)(X,(,a)>) = ((a, lz, e)( ,~)(X,( ,a)(M)[ao, 

( a , l ~ , e ) , ( X , ( , a )  E g(~.,T). (5.33) 

Let us fix A to be a constant real diagonal matrix, with all eigenvalues different. The 
space 

C = ((A/A + a, Tr, ½A) [ a E so(N),  or E ]I~ N} (5.34) 

is a Poisson subspace of g(Z~,7-)* with respect to the R0 Lie-Poisson bracket (see 
Appendix). Moreover it can easily be checked that C together with the R0 Lie-Poisson 
bracket is the same as (so(N) ~< ]Ru) * with the ordinary Lie-Poisson bracket; this is 
the phase space for the Clebsch system. 

We get 

m(AiA+a,¢r ,  ½A) = i A A + a + i A - ~ r T r r = L ( A )  say. (5.35) 

The mapping L : so(N) ~< R N ~ twisted loop algebra of su(N) given by (5.35) is the 
well known Lax representation for the Clebsch system. It is invertible and so commuting 
flows on so(N) ~< 1~ can be found directly in the standard way: 
H E C ~ ( g ( £ , r ) )  given by 

N 

1 (iA) -j+z t rm(a,  tz, e)J+l[ao cl ,cN E R (5.36) H(a, l~ ,e)  = Z j + lCJ . . . . . .  
j=l 

is an element of l (g(~ ,7)*) .  If we evaluate this function at a point in C we have 

N 
1 

H(AiA + a, 7"r, ½A) = Z - f - -~cj( ia)- j+l  tr L(A)j+I la0. (5.37) 
j=l 

The flow corresponding to the hamiltonian H is given by the Lax equation 

L(a) = [iaB + w ( a ) , L ( a ) ] ,  (5.38) 

where B and to are given by 

N N 

B = Z cjAJ' to(a) = ~ c j ( a J - l a  + AJ-2aA + . . .  + otA j-I  ). (5.39) 
j=l j=l 
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Formulae (5.37) and (5.38) are equivalent to the Clebsch system. That is, (5.37) is 

the hamiltonian function, and the Lax equation (5.38) is equivalent to the equation of 
motion of the Clebsch system 

6. Conclusion 

We examined the canonical symmetry actions of D i f f ( S  1 ) and of G on the left 

and on the right on the symplectic manifold T*(~k, whose symplectic structure is a 

deformation of the canonical one by the addition of a term depending on the coadjoint 

one-cocycle on (~. We found that the forms of the moment maps for these actions are 

such that the existence and the form of a Poisson map m : ~* --~ V/R*, are immediately 

transparent. This is a reflection of the duality property of the left and right moment 

maps. 
We have thus been able to give a simple explanation of the results of Refs. [ 1 ] and 

[2], which themselves incorporated all of the results of Refs. [3] and [4]. 

We then considered the proposition that the above discussion is nothing but a special 
case of a general geometric construction based on a dual pair of Poisson maps. We 

therefore have to ask whether there exist manifolds other than T*t~k, with other mo- 

ment maps, for which the underlying argument carries through, to produce something 

interesting. 
We have shown that other examples are possible and have described an example - 

that of the Clebsch case of a rigid body in an ideal fluid. 

It remains to be seen whether the geometric description of the Miura map, as described 

in this paper, will be applicable to any other examples. 

Appendix A. The use of  the r-matrix to find hamiitonian systems with commuting 
hami l ton ian  flows 

Any vector space whose dual space has a Lie algebra structure is itself endowed with 
a Poisson structure corresponding to the Lie algebra structure. This Poisson structure is 
called the Lie-Poisson structure: 

Let a be a Lie algebra with Lie bracket [ , ]. The dual space a* has the Lie-Poisson 
bracket{ , } : C ~ ( a  * ) A C ~ ( a  *) ~ C ~ ( a  *) given by 

{F,G}(a)=ce([daF,  daG]), E G E C ° ° ( a * ) .  (A.1) 

Here daF and d~G are the differentials of F and G which are computed by the rule 

d t=0 ,8(d,~F) = ~-~ F(ce +/3 t )  V/3 E n*. (A.2) 

For the r-matrix construction we make use of the following very special extra ingredient: 
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Suppose that a has two Lie brackets [ , ] and [ , ] R and that there exists a linear 
operator R E End(a )  such that 

[X, YIR = ½[RX, r] + ½[X, RY] VX, Y E a. (A.3) 

It follows that the dual space a* has two Lie-Poisson brackets { , } and { , }R, 

corresponding respectively to [ , ] and to [ , ] R. R is called an r-matrix. 

l ( a * )  is defined by 

l (a*) = { f  E C ~ ( a  *) I f ( A d ~ a )  = f ( a )  Vg E A}. (A.4) 

Here A is the group whose Lie algebra is (a, [ , ] ). 
In case we don' t  want to compute with A, we can obtain an infinitesimal condition 

by differentiating (A.4):  

l (a*) = { f  E C°°(a *) [ a ( [da f i  X])  =O V X E a } .  (A.5) 

It is a simple exercise using the above definitions, to prove the following theorem. 

Theo rem (see for example Ref. [9] ). 

(i) Let ~o,~, E l ( a * ) .  Then 

{q~, ~O}R = 0. (A.6) 

(ii) The hamiltonian vector field corresponding to H E l ( a*), with the R Lie-Poisson 

bracket is given by 

l • ( A . 7 )  & = :ad(Rd,~)a, 

where ad* means the action dual to the ad-action given by [ , ]. 

I m p o r t a n t  example .  One almost invariably makes use of  the following special case: 

Suppose that a+ and a_ are both subalgebras of  a with a = a+ + a _ ;  i.e., a+ Ma_ = {0} 
and any element X of  a has a unique decomposition of the form 

X = X + + X _  , w h e r e X +  E a + .  (A.8) 

Then R = P+ - P_,  where P:t: are the projections on a corresponding to this decompo- 
sition, defines an r-matrix. The r-bracket of  (A.3) becomes 

[X,Y]R = [X+,Y+] - [X_,Y_] .  (A.9) 

In this special case the Theorem is equivalent to the Adler-Kostant-Symes Theorem, 
although it has to be said that the r-matrix still remains an extremely useful computa- 
tional tool. 
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Canonical r-matrices on £(g). The most common application of the r-matrix theorem 

is to the loop algebra £(0) = g ® C[A,A - t ]  of polynomials in h and A-i with 
coefficients in a Lie algebra g. (A is the spectral parameter of Inverse Scattering Theory.) 
£(g)* is identified with ~(~*) by 

( ~ , x )  = [ ~ ( a ) ( x ( a ) ) ] I a o  = ~--~ ~ ( x _ ; )  , (A.10) 

where a(,~) = ~ aiA i and X(A) = ~ XjA j. Here the subscript A ° indicates the coeffi- 
cient of a ° in the series expansion. Clearly 

f ( g ) + = g ® C [ A ]  and £ ( O ) _ = g Q A - 1 C [ A  -1] (A.11) 

are subalgebras whose intersection contains only zero, and 

e(g)  = e (~ )÷  e e ( g ) _ .  (A.12) 

Hence R = P+ - P_ is an r-matrix on £(~). 
The following extension to the above r-matrix gives a family of compatible R Lie- 

Poisson brackets on e(g*), see Ref. [10] and also Ref. [9]. Let q(,~) C C [,~,,~-1], 
then it is easy to check that Rq defined by Rq = R o q, is an r-matrix on £(g) for any 

q. It can be checked that the space M-m,n C ~(1~*) given by 

M-m,n  = oli ~i (A.13) 
i= -- m 

is a Poisson subspace with respect to the Rq Lie-Poisson bracket on e(g*) as long as 
m > - 1 ,  n > 0 and - m  - 1 < lowest power of a in q, n > highest power of a in q. 

In the case of a twisted loop algebra exactly the same arguments apply, but for the 
family of Rq Lie-Poisson brackets now we must have q(a)  ~ C [a 2, a -2] .  

To define a system with commuting flows using this method then, we take any Lie 

algebra g and immediately restrict our attention to a Poisson subspace M-m,n C e(g*). 
we look for l (g*)  and consider the evaluation of an element of I(g*) at a generic 
(,~-dependent) point in M-m,n.  (In practice it is quite important that things are done 
in this order, as the set I (0" )  is typically defined by solutions of a spectral problem 
- as for example in (3.16) of the Theorem in Section 3 - and so concretely they are 
given only by evaluation at a point of M-m,n as terms in an asymptotic series in ,~.) 
The result will be a series in A. Any term in this series will be a candidate hamiltonian. 
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